ERIC CHEN

echen9898.github.io | echen9898@gmail.com | (510) 816-1385 | Boston, MA

EDUCATION

Massachusetts Institute of Technology	
M. Eng., Electrical Engineering and Computer Science	2021
B.S., Physics	2020
B.S., Electrical Engineering and Computer Science	2020

PUBLICATIONS

Eric Chen*, Zhang-Wei Hong*, Joni Pajarinen, Pulkit Agrawal. Redeeming Intrinsic Rewards via Constrained Optimization, Conference on Neural Information Processing Systems (NeurIPS), 2022.

EXPERIENCE

Aurora Flight Sciences AI/ML Research Engineer, <i>Dr. Sildomar Monteiro</i>	January 2022 – present
 Researching learning from demonstrations with Prof. Pulkit Agrawal (MIT); develocity develocity for the DARPA ShELL program 	veloping continual reinforcement learning
 PM and lead developer for S2A2 NASA ULI partnership 	
Improbable AI Group, MIT CSAIL Graduate Research Assistant, <i>Prof. Pulkit Agrawal</i>	September 2019 – January 2022
• Published a novel method that adaptively balances reward terms in reinforcement le	earning
MIT 6.832: Underactuated Robotics Graduate Teaching Assistant, Prof. Russ Tedrake	February 2021 – May 2021
Learning and Intelligent Systems Group, MIT CSAIL Undergraduate Researcher, <i>Prof. Leslie Kaelbling</i>	June 2019 – December 2019
 Improved efficiency of graph search algorithms by 25% by using lazy edge evalu methods (A*, LPA*, D* Lite), and profiling code in Julia 	ations; implemented simulation, baseline
Little Devices Lab, MIT Edgerton Undergraduate Researcher, <i>Jose Gomez-Marquez</i>	June 2019 – September 2019
 Prototyped a low-cost rapid disease testing platform (software/hardware); developed on the International Space Station 	software/hardware for a NASA experiment
Interactive Robotics Group, MIT CSAIL Undergraduate Researcher, <i>Prof. Julie Shah</i>	September 2018 – June 2019
• Implemented safe simulation to real-world transfer of a learned control policy on a	robot car using ROS
Rev.com Software Engineering Intern	June 2018 – August 2018
• Collaborated within a 5-person team to deploy production-ready features for autom	nated speech-to-text transcription services
Marine Robotics Group, MIT CSAIL Undergraduate Researcher, <i>Prof. John Leonard</i>	January 2018 – May 2018
• Designed and integrated visual-based obstacle avoidance on the Remote Explorer (REx) autonomous marine vehicle
HONORS AND AWARDS	

National Science Foundation Graduate Research Fellowship Program (NSF GRFP), honorable mention	2021
Amazon Web Services Machine Learning Research Awards (AWS MLRA) Grant, \$100,000	2020
MIT Emerson Music Scholar	2016 - 2018

SKILLS

Skills	Python, C++, ROS, PyTorch, Tensorflow, Docker, AWS/GCP, Git, Bash, Julia, C $\#$
Selected courses	Statistical Learning Theory, Computational Sensorimotor Learning
	Computer Vision, Embodied Intelligence, Underactuated Robotics, Robotics Science and Systems